35,754 research outputs found

    Observation of Magnetic Moments in the Superconducting State of YBa2_2Cu3_3O6.6_{6.6}

    Get PDF
    Neutron Scattering measurements for YBa2_2Cu3_3O6.6_{6.6} have identified small magnetic moments that increase in strength as the temperature is reduced below T∗T^\ast and further increase below TcT_c. An analysis of the data shows the moments are antiferromagnetic between the Cu-O planes with a correlation length of longer than 195 \AA in the aa-bb plane and about 35 \AA along the c-axis. The origin of the moments is unknown, and their properties are discusssed both in terms of Cu spin magnetism and orbital bond currents.Comment: 9 pages, and 4 figure

    Neutron Scattering Studies of the Magnetic Fluctuations in YBa_2Cu_3O_{7-\delta}

    Full text link
    Neutron scattering measurements have been made on the spin fluctuations in YBa_2Cu_3O_{7-\delta} for different oxygen doping levels. Incommensurability is clearly observed for oxygen concentrations of 6.6 and 6.7 and is suggested for the 6.93. Measurements of the resonance for the O_{6.6} concentration show that it exists in a broadened and less intense form at temperatures much higher than T_c.Comment: 9 pages, 4 gif figures, Proceedings of Spectroscopies in Novel Superconductors, Cape Cod, Massachusetts, Sept, 199

    Additivity of Entangled Channel Capacity for Quantum Input States

    Get PDF
    An elementary introduction into algebraic approach to unified quantum information theory and operational approach to quantum entanglement as generalized encoding is given. After introducing compound quantum state and two types of informational divergences, namely, Araki-Umegaki (a-type) and of Belavkin-Staszewski (b-type) quantum relative entropic information, this paper treats two types of quantum mutual information via entanglement and defines two types of corresponding quantum channel capacities as the supremum via the generalized encodings. It proves the additivity property of quantum channel capacities via entanglement, which extends the earlier results of V. P. Belavkin to products of arbitrary quantum channels for quantum relative entropy of any type.Comment: 17 pages. See the related papers at http://www.maths.nott.ac.uk/personal/vpb/research/ent_com.htm

    Behavior of X-Ray Dust Scattering and Implications for X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    The afterglows of gamma-ray bursts (GRBs) have commonly been assumed to be due to shocks sweeping up the circum-stellar medium. However, most GRBs have been found in dense star-forming regions where a significant fraction of the prompt X-ray emission can be scattered by dust grains. Here we revisit the behavior of dust scattering of X-rays in GRBs. We find that the features of some X-ray afterglows from minutes to days after the gamma-ray triggers are consistent with the scattering of prompt X-ray emission from GRBs off host dust grains. This implies that some of the observed X-ray afterglows (especially those without sharp rising and decaying flares) could be understood with a dust-scattering--driven emission model.Comment: ApJ, in pres

    A nucleon-pair and boson coexistent description of nuclei

    Full text link
    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside a inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena is examined through an analysis of pf-shell nuclei with realistic single-particle energies in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth with the number of the s-bosons noticeably more than that of the nucleonpairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for B(E2; 0^{+}_{g}->2^{+}_1) values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d5/2, 0g7/2, 1d3/2, 2s1/2, 1h11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are well reproduced.Comment: 5.1 pages, 3 figures, LaTe

    Pseudogap and incommensurate magnetic fluctuations in YBa_2Cu_3O_{6. 6}

    Full text link
    Unpolarized inelastic neutron scattering is used to study the temperature and wave vector dependence of the dynamical magnetic susceptibility, χ′′(q,ω)\chi''(q,\omega), of a well characterized single crystal YBa2Cu3O6.6YBa_2Cu_3O_{6.6} (Tc=62.7T_c=62.7 K). We find that a pseudogap opens in the spin fluctuation spectrum at temperatures well above TcT_c. We speculate that the appearance of the low frequency incommensurate fluctuations is associated with the opening of the pseudogap. To within the error of the measurements, a gap in the spin fluctuation spectrum is found in the superconducting state.Comment: 6 pages, 3 ps figs, Proceedings of ICNS, Physica B, to be publishe

    Image Properties of Embedded Lenses

    Full text link
    We give analytic expressions for image properties of objects seen around point mass lenses embedded in a flat Λ\LambdaCDM universe. An embedded lens in an otherwise homogeneous universe offers a more realistic representation of the lens's gravity field and its associated deflection properties than does the conventional linear superposition theory. Embedding reduces the range of the gravitational force acting on passing light beams thus altering all quantities such as deflection angles, amplifications, shears and Einstein ring sizes. Embedding also exhibits the explicit effect of the cosmological constant on these same lensing quantities. In this paper we present these new results and demonstrate how they can be used. The effects of embedding on image properties, although small i.e., usually less than a fraction of a percent, have a more pronounced effect on image distortions in weak lensing where the effects can be larger than 10%. Embedding also introduces a negative surface mass density for both weak and strong lensing, a quantity altogether absent in conventional Schwarzschild lensing. In strong lensing we find only one additional quantity, the potential part of the time delay, which differs from conventional lensing by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure
    • …
    corecore